Terrain Relative Navigation (TRN)

Completed Technology Project (2016 - 2021)

Project Introduction

TRN is a key part of the MARS 2020 Guidance, Navigation, and Control (GNC) subsystem designed to provide the capability to avoid large scale landing hazards during the entry, descent and landing (EDL) phase of the mission. TRN uses images gathered during descent to identify surface features and match them to orbital images to identify where the vehicle is and avoid pre-identified landing hazards. Additionally the technology will allow the vehicle to identify key science targets and land near those targets thus significantly reducing required surface traverse after landing.

Anticipated Benefits

The technology developed under the TRN project will be key to future human and robotic missions by enabling safe access to scientifically compelling landing sites and providing surface processing capability to support surface mobility and autonomy.

Primary U.S. Work Locations and Key Partners

Terrain-Relative Navigation helps us land safely on Mars especially when the land below is full of hazards like steep slopes and large rocks!

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Links	3
Project Website:	3
Technology Areas	3
Target Destinations	3
Supported Mission Type	3

Technology Demonstration Missions

Terrain Relative Navigation (TRN)

Organizations Performing Work	Role	Туре	Location
	Lead	NASA	Pasadena,
	Organization	Center	California
Langley Research	Supporting	NASA	Hampton,
Center(LaRC)	Organization	Center	Virginia

Co-Funding Partners	Туре	Location
Exploration Capabilities	NASA Program	
Science Mission Directorate(SMD)	NASA Mission Directorate	

Primary U.S. Work Locations	
California	Virginia

Project Transitions

October 2016: Project Start

April 2021: Closed out

Closeout Summary: Just before 3:00 p.m. CST on February 18, the Persevera nce rover successfully touched down in Jezero crater, Mars. Approximately 240 s econds into the entry stage and 7 miles above the surface, the parachute was d eployed, followed shortly by jettison of the heat shield to further slow the space craft and allowing a new EDL capability — Terrain-Relative Navigation — to get t o work. The Terrain-Relative Navigation system used a camera on the bottom of the rover to compare the features on the martian surface to an onboard map to determine its exact trajectory and landing site. The terrain of Jezero crater nece ssitated little margin for error during landing as it contains steep cliffs, sand, bo ulders, and craters that can be hazardous to the rover.

Closeout Link: https://mars.nasa.gov/mars2020/mission/technology/#Terrain-Relative-Navigation

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Jet Propulsion Laboratory (JPL)

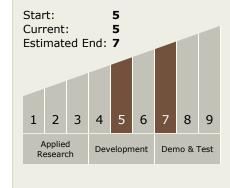
Responsible Program:

Technology Demonstration Missions

Project Management

Program Director:

Trudy F Kortes


Program Manager:

Tawnya P Laughinghouse

Principal Investigator:

George Tahu

Technology Maturity (TRL)

Technology Demonstration Missions

Terrain Relative Navigation (TRN)

Completed Technology Project (2016 - 2021)

Images

Terrain Relative Navigation (TRN).gif

Terrain-Relative Navigation helps us land safely on Mars - especially when the land below is full of hazards like steep slopes and large rocks!

(https://techport.nasa.gov/imag e/100911)

Links

EDL simulation

(https://mars.nasa.gov/mars2020/timeline/landing/entry-descent-landing/)

Project Website:

https://www.nasa.gov/mission_pages/tdm/main/index.html#.VQb6XUjJzyE

Technology Areas

Primary:

- TX17 Guidance, Navigation, and Control (GN&C)
 - □ TX17.2 Navigation Technologies
 - ☐ TX17.2.1 Onboard

 Navigation Algorithms

Target Destinations

Mars, Foundational Knowledge

Supported Mission Type

Planned Mission (Pull)

